MOLECULAR STRUCTURES OF DONOR-ACCEPTOR COMPLEXES OF BORON TRIFLUORIDE WITH TRIMETHYLAMINE AND DIMETHYLETHER

Shuzo SHIBATA and Kinya IIJIMA
Department of Chemistry, Shizuoka University, Oya, Shizuoka 422

The molecular structures of $(CH_3)_3N\cdot BF_3$ and $(CH_3)_2O\cdot BF_3$ were determined by electron diffraction. Both molecules were found to have a staggered form with $r_g(N-B)=1.673\pm0.006$ Å, $r_g(O-B)=1.719\pm0.023$ Å. The other molecular parameters for the complexes were compared with those for their donors and acceptor.

The Lewis complexes trimethylamine-boron trifluoride $(CH_3)_3N\cdot BF_3$ and dimethylether-boron trifluoride $(CH_3)_20\cdot BF_3$ are considerably stable in the gaseous state. 1,2) The molecular structures of gaseous $(CH_3)_3N\cdot BF_3$ and $(CH_3)_20\cdot BF_3$ were already studied by microwave spectra and electron diffraction, 1 respectively. However, the microwave spectroscopic study gave only the N-B distance in spite of the interesting result that it is very different from that by X-ray diffraction. On the other

Fig. 1. Molecular intensities of $(CH_3)_3N \cdot BF_3$ and $(CH_3)_2O \cdot BF_3$ a): $(CH_3)_3N \cdot BF_3$ b): $(CH_3)_2O \cdot BF_3$ The dots are the observed intensities, and the curves are the calculated intensity variations.

hand, the diffraction study was carried out by a visual method with many assumptions on the geometry of the molecule. Therefore, more accurate determinations of the structures of both molecules were carried out using a sector-microphotometer method. 6)

The 1:1 complexes $(CH_3)_3N \cdot BF_3$ and $(CH_3)_2O \cdot BF_3$ were prepared by mixing the donor and acceptor components, and were purified by sublimation and vacuum distillation, respectively.

Electron diffraction experiments were performed using high voltage of 40 kV, an r^3 -sector, and camera distances of 144 and 294 mm. The sample of $(CH_3)_3N\cdot BF_3$ was vaporized at 130°C by means of a high-temperature nozzle, but the sample of $(CH_3)_20\cdot BF_3$ was directly injected to a diffraction chamber at 16°C through a nozzle from a flask. The average intensities shown in Fig. 1 were obtained from densitometries for four short and three long distance photographs for $(CH_3)_3N\cdot BF_3$ and three plates for each distance for $(CH_3)_20\cdot BF_3$. Least-squares method $^{7,8)}$ were applied to intensity data in the s ranges of 2.5 - 33.0 Å $^{-1}$ for $(CH_3)_3N\cdot BF_3$ and 2.5 - 34.2 Å $^{-1}$ for $(CH_3)_20\cdot BF_3$. In the analysis of $(CH_3)_3N\cdot BF_3$, C_{3V} symmetry with a staggered form was assumed. An assumption of an eclipsed form could not yield good convergence in the calculations. C_s symmetry was assumed for $(CH_3)_20\cdot BF_3$ with C_{2V} for $(CH_3)_20$ and C_{3V} for BF_3 . Table 1 lists the structure parameters obtained for both complexes. In the analysis of $(CH_3)_20\cdot BF_3$ the degree of dissociation was taken as one of parameters varied. The bond distances and bond angles are quite different from those by Bauer et al. 4 The planar form suggested by them was excluded, and a staggered form was concluded.

When the donor $(\text{CH}_3)_3\text{N}^9)$ or $(\text{CH}_3)_20^{10)}$ and the acceptor $\text{BF}_3^{-11})$ form a complex molecule, main changes in the molecular structures are the increases in the B-F

	(CH ₃) ₃ N·BF ₃			$(CH_3)_2 O \cdot BF_3$	
	rg	3	1	r _g	1
$X-B^{a)}(\mathring{A})$	1.673	(6) ^{b)}	0.082 (11)	1.719 (23)	0.133 (32)
X-C (Å)	1.485	(3)	0.056 (4)	1.425 (10)	0.060 ^{c)}
B-F (Å)	1.374	(2)	0.052 (3)	1.358 (7)	0.064 (6)
F-F (Å)	2.291	(3)	0.068 (2)	2.324 (20)	0.089 (9)
С—Н (Å)	1.100	(4)	0.075 (3)	1.117 (13)	0.080 (9)
CC (Å)	2.428	(5)	0.062 ^{c)}	2.311 (42)	0.075 ^{c)}
∠FBF (°)	112.9	(3)		117.6 (19)	
∠CXC (°)	109.6	(5)		108.4 (31)	
∠BXC (°)	109.3	(5)		119.2 (32)	
form	stagge	red		staggered	

TABLE 1. MOLECULAR STRUCTURES OF $(CH_3)_3N \cdot BF_3$ AND $(CH_3)_2O \cdot BF_3$ IN THE GAS PHASE

a) X = N or O. b) This means error for 99 % confidence.

c) assumed values.

	(CH ₃) ₃ N, ^{a)} BF ₃ b)	$(CH_3)_3N \cdot BF_3^{c)}$	$(CH_3)_3 N \cdot BF_3^d$
	(gas)	(gas)	(solid)
N - B		1.673 Å	1.585 Å
B - F	1.313 Å	1.374 Å	1.39 Å
N - C	1.454 Å	1.485 Å	1.50 Å
∡ FBF	120.0°	112.9°	107°
∠ CNC	110.6°	109.6	114°

TABLE 2. COMPARISON OF THE STRUCTURAL DATA FOR $(\text{CH}_3)_3\text{N}$, BF_3 , AND $(\text{CH}_3)_3\text{N}\cdot\text{BF}_3$

a) Ref. 9. b) Ref. 11. c) present data. d) Ref. 5.

distance, 0.06 and 0.04 Å, and the decreases in the FBF angle, 7.1 and 2.4°, for $(CH_3)_3N\cdot BF_3$ and $(CH_3)_20\cdot BF_3$, respectively. That a planar structure of the free BF_3 molecule changes to a pyramidal structure is, of course, due to the donor-acceptor chond formation. The comparison of the present data of $(CH_3)_3N\cdot BF_3$ with the X-ray data shows a considerable increase of the N-B distance with an increase of the FBF angle, as seen from Table 2. This suggests that the donor-acceptor bond enhanced in the solid state. The N-B distance (1.636 ± 0.004 Å) determined from the microwave spectroscopy was greater than that determined from the X-ray analysis. This also indicates a change between the gas and the solid. However the N-B distance from the present study is still longer than that from the above spectroscopic study. Therefore it appears that the N-B bond is lengthened as the temperature is raised from room temperature to high temperature (130 - 140°C) because the donor-acceptor bond is remarkably weak.

The complex of $(CH_3)_2O \cdot BF_3$ is less stable than that of $(CH_3)_3N \cdot BF_3$. For example, the heats of formation of both complexes were estimated to be 13.65^2) and 26.6^{12}) kcal/mol, respectively. The finding that the O-B distance (1.719 Å) is pretty larger than the N-B distance (1.673 Å) is compatible with these facts. The least-square analysis for $(CH_3)_2O \cdot BF_3$ yielded the dissociation of 47 % at $16^{\circ}C$. This value is in good agreement with that from thermochemical data. ²)

The present results indicate two general features in donor-acceptor complex formation: The molecular structure of a donor remains almost unchanged and the nitrogen is more active as a donor atom than the oxygen.

REFERENCES

- 1) A. B. Burg and A. A. Green, J. Amer. Chem. Soc., 65, 1838 (1943).
- 2) D. E. McLaughlin and M. Tamres, ibid., 82, 5618 (1960).
- 3) P. S. Bryan and R. L. Kuczkowski, Inorg. Chem., 10, 200 (1971).

- 4) S. H. Bauer, G. R. Finlay, and A. W. Laubengayer, J. Amer. Chem. Soc., <u>65</u>, 889 (1943); ibid., 67, 339 (1945).
- 5) S. Geller and J. L. Hoard, Acta Crystallogr., 4, 399 (1951).
- 6) S. Shibata, K. Iijima, R. Tani, and I. Nakamura, Rep. Fac. Sci. Shizuoka Univ., 9, 33 (1974).
- 7) S. Shibata, Bull. Chem. Soc. Jap., 45, 1631 (1972).
- 8) K. Iijima and S. Shibata, ibid., <u>48</u>, 666 (1975).
- 9) B. Beagley and T. G. Hewitt, Tran. Faraday Soc., 64, 2561 (1968).
- 10) K. Kimura and M. Kubo, J. Chem. Phys., 30, 151 (1959).
- 11) K. Kuchitsu and S. Konaka, ibid., 45, 4342 (1966).
- 12) R. E. McCoy and S. H. Bauer, J. Amer. Chem. Soc., 78, 2061 (1956).

(Received November 1, 1976)